Sparse channel estimation algorithms for OTFS system

نویسندگان

چکیده

Orthogonal time-frequency space (OTFS) modulation, which has recently been proposed in the literature, is one of promising techniques designed 2D Delay-Doppler domain adapted to combat high Doppler fading channels. However, channel estimation scenarios advanced mobile-communication systems still a challenging task. In this paper, problem OTFS focused on. First, simple adaptation generalized orthogonal matching pursuit procedure, will serve as baseline method work, proposed. Then, iterative algorithms are derived beneficiating from sparsity channel. The unknown vector separated into an sparse support corresponding delay and taps, gains. These involve ℓ1-norm minimization two-stage procedure recover alternatively its coefficients. also addressed Bayesian point view. representation reformulated specific marginalization maximum posteriori on To deal with intractability problem, two existing context, namely: Monte Carlo Markov chain Gibbs sampler variational mean-field approximation expectation-maximization procedure. Finally, assess performance algorithms, their complexity compared against methods. Experimental tests, conducted high-mobility low-latency applications, show that schemes slightly more expensive terms load but perform significantly better normalized mean square error bit rate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Channel Estimation for DVB-T2 Systems by Utilizing Side Information on OFDM Sparse Channel Estimation

The second generation of digital video broadcasting (DVB-T2) standard utilizes orthogonal frequency division multiplexing (OFDM) system to reduce and to compensate the channel effects by utilizing its estimation. Since wireless channels are inherently sparse, it is possible to utilize sparse representation (SR) methods to estimate the channel. In addition to sparsity feature of the channel, the...

متن کامل

channel estimation for mimo-ofdm systems

تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با ‏خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز ‏الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی ‏محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...

Sparse Recovery Algorithms for Pilot Assisted MIMO OFDM Channel Estimation

In this letter, the sparse recovery algorithm orthogonal matching pursuit (OMP) and subspace pursuit (SP) are applied for MIMO OFDM channel estimation. A new algorithm named SOMP is proposed, which combines the advantage of OMP and SP. Simulation results based on 3GPP spatial channel model (SCM) demonstrate that SOMP performs better than OMP and SP in terms of normalized mean square error (NMSE...

متن کامل

Underwater acoustic channel estimation based on sparse recovery algorithms

The authors consider underwater acoustic (UWA) channel estimation based on sparse recovery using the recently developed homotopy algorithm. The UWA communication system under consideration employs orthogonal frequencydivision multiplexing (OFDM) and receiver preprocessing to compensate for the Doppler effect before channel estimation. The authors first extend the original homotopy algorithm whi...

متن کامل

On Sparse Channel Estimation

Channel Estimation is an essential component in applications such as radar and data communication. In multi path time varying environments, it is necessary to estimate time-shifts, scale-shifts (the wideband equivalent of Doppler-shifts), and the gains/phases of each of the multiple paths. With recent advances in sparse estimation (or " compressive sensing "), new estimation techniques have eme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Iet Communications

سال: 2022

ISSN: ['1751-8636', '1751-8628']

DOI: https://doi.org/10.1049/cmu2.12469